55 hierNumber[v] = hierNum;
57 bool returnValue =
true;
60 edge e = adj->theEdge();
88 returnValue =
dfsGenTreeRec(UG, used, hierNumber, hierNum, w, fakedGens, fakeTree);
100 edge e = adj->theEdge();
126 for (
edge e : G.edges) {
131 node sink = e->target();
133 int cycleCounter = 0;
135 sink = sinkPath->
target();
139 if (cycleCounter > G.numberOfEdges()) {
142 sink = sinkPath->
source();
Includes declaration of graph class.
Decralation of GraphElement and GraphList classes.
Declaration of doubly linked lists and iterators.
Declaration of class UMLGraph.
Basic declarations, included by all source files.
Class for adjacency list elements.
Class for the representation of edges.
node opposite(node v) const
Returns the adjacent node different from v.
node target() const
Returns the target node of the edge.
node source() const
Returns the source node of the edge.
const Graph & constGraph() const
Returns a reference to the associated graph.
Graph::NodeType type(node v) const
Returns the type of node v.
Data type for general directed graphs (adjacency list representation).
Doubly linked lists (maintaining the length of the list).
iterator pushBack(const E &x)
Adds element x at the end of the list.
Class for the representation of nodes.
internal::GraphObjectContainer< AdjElement > adjEntries
The container containing all entries in the adjacency list of this node.
RegisteredArray for edges of a graph, specialized for EdgeArray<edge>.
RegisteredArray for nodes, edges and adjEntries of a graph.
Decralation of graph iterators.
bool isTree(const Graph &G)
Returns true iff G is a tree, i.e. contains no undirected cycle and is connected.
#define OGDF_ASSERT(expr)
Assert condition expr. See doc/build.md for more information.
The namespace for all OGDF objects.
bool dfsGenTree(UMLGraph &UG, List< edge > &fakedGens, bool fakeTree)
bool dfsGenTreeRec(UMLGraph &UG, EdgeArray< bool > &used, NodeArray< int > &hierNumber, int hierNum, node v, List< edge > &fakedGens, bool fakeTree)
edge firstOutGen(UMLGraph &UG, node v, EdgeArray< bool > &)